Cesàro means of Jacobi expansions on the parabolic biangle
نویسندگان
چکیده
We study Cesàro (C, δ) means for two-variable Jacobi polynomials on the parabolic biangle B = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ x2 ≤ 1}. Using the product formula derived by Koornwinder & Schwartz for this polynomial system, the Cesàro operator can be interpreted as a convolution operator. We then show that the Cesàro (C, δ) means of the orthogonal expansion on the biangle are uniformly bounded if δ > α + β + 1, α − 1 2 ≥ β ≥ 0. Furthermore, for δ ≥ α+ 2β + 32 the means define positive linear operators.
منابع مشابه
Cesàro Means of Orthogonal Expansions in Several Variables
Cesàro (C, δ) means are studied for orthogonal expansions with respect to the weight function ∏d i=1 |xi |2κi on the unit sphere, and for the corresponding weight functions on the unit ball and the Jacobi weight on the simplex. A sharp pointwise estimate is established for the (C, δ) kernel with δ >−1 and for the kernel of the projection operator, which allows us to derive the exact order for t...
متن کاملDivergent Cesàro and Riesz means of Jacobi and Laguerre expansions
We show that for δ below certain critical indices there are functions whose Jacobi or Laguerre expansions have almost everywhere divergent Cesàro and Riesz means of order δ.
متن کاملDivergent Cesàro Means of Jacobi-Sobolev Expansions
Let μ be the Jacobi measure supported on the interval [−1, 1]. Let introduce the Sobolev-type inner product 〈f, g〉 = ∫ 1 −1 f(x)g(x) dμ(x) +Mf(1)g(1) +Nf ′(1)g′(1), where M,N ≥ 0. In this paper we prove that, for certain indices δ, there are functions whose Cesàro means of order δ in the Fourier expansion in terms of the orthonormal polynomials associated with the above Sobolev inner product ar...
متن کاملPolynomial operators and local smoothness classes on the unit interval
We obtain a characterization of local Besov spaces of functions on [−1, 1] in terms of algebraic polynomial operators. These operators are constructed using the coefficients in the orthogonal polynomial expansions of the functions involved. The example of Jacobi polynomials is studied in further detail. A by-product of our proofs is an apparently simple proof of the fact that the Cesàro means o...
متن کاملSummability Method of Jacobi Series
In this paper, an application to the approximation by wavelets has been obtained by using matrix-Cesàro (Λ · C1) method of Jacobi polynomials. The rapid rate of convergence of matrix-Cesàro method of Jacobi polynomials are estimated. The result of Theorem (6.1) of this research paper is applicable for avoiding the Gibbs phenomenon in intermediate levels of wavelet approximations. There are majo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 159 شماره
صفحات -
تاریخ انتشار 2009