Cesàro means of Jacobi expansions on the parabolic biangle

نویسندگان

  • Wolfgang zu Castell
  • Frank Filbir
  • Yuan Xu
چکیده

We study Cesàro (C, δ) means for two-variable Jacobi polynomials on the parabolic biangle B = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ x2 ≤ 1}. Using the product formula derived by Koornwinder & Schwartz for this polynomial system, the Cesàro operator can be interpreted as a convolution operator. We then show that the Cesàro (C, δ) means of the orthogonal expansion on the biangle are uniformly bounded if δ > α + β + 1, α − 1 2 ≥ β ≥ 0. Furthermore, for δ ≥ α+ 2β + 32 the means define positive linear operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cesàro Means of Orthogonal Expansions in Several Variables

Cesàro (C, δ) means are studied for orthogonal expansions with respect to the weight function ∏d i=1 |xi |2κi on the unit sphere, and for the corresponding weight functions on the unit ball and the Jacobi weight on the simplex. A sharp pointwise estimate is established for the (C, δ) kernel with δ >−1 and for the kernel of the projection operator, which allows us to derive the exact order for t...

متن کامل

Divergent Cesàro and Riesz means of Jacobi and Laguerre expansions

We show that for δ below certain critical indices there are functions whose Jacobi or Laguerre expansions have almost everywhere divergent Cesàro and Riesz means of order δ.

متن کامل

Divergent Cesàro Means of Jacobi-Sobolev Expansions

Let μ be the Jacobi measure supported on the interval [−1, 1]. Let introduce the Sobolev-type inner product 〈f, g〉 = ∫ 1 −1 f(x)g(x) dμ(x) +Mf(1)g(1) +Nf ′(1)g′(1), where M,N ≥ 0. In this paper we prove that, for certain indices δ, there are functions whose Cesàro means of order δ in the Fourier expansion in terms of the orthonormal polynomials associated with the above Sobolev inner product ar...

متن کامل

Polynomial operators and local smoothness classes on the unit interval

We obtain a characterization of local Besov spaces of functions on [−1, 1] in terms of algebraic polynomial operators. These operators are constructed using the coefficients in the orthogonal polynomial expansions of the functions involved. The example of Jacobi polynomials is studied in further detail. A by-product of our proofs is an apparently simple proof of the fact that the Cesàro means o...

متن کامل

Summability Method of Jacobi Series

In this paper, an application to the approximation by wavelets has been obtained by using matrix-Cesàro (Λ · C1) method of Jacobi polynomials. The rapid rate of convergence of matrix-Cesàro method of Jacobi polynomials are estimated. The result of Theorem (6.1) of this research paper is applicable for avoiding the Gibbs phenomenon in intermediate levels of wavelet approximations. There are majo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2009